Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 3 Next »



SkyactivG Tuning Guide (ND Miata)


Introduction

The Skyactive engine platform found in the ND MX-5 vehicles is a particularly complex system.  Throughout our development we’ve made an effort to balance our efforts in simplifying the tuning system, as well as offering RaceROM features in the limited free space available to us in the ROM.  This means our RaceROM offerings are slightly different than in other platforms as there are either simplified forms being used, or something altogether unique.

With a framework for the platform in place, we’ll be working with our dealers in order to balance the features for this platform, with the practical limits of the ECU.


The Platform

The Mazda Mx-5 SkyactivG cars use a high compression (14.0:1) 1.8L or 2.0L 4 cylinder engine utilising direct injection with a high degree of freedom of cam timing on both inlet and exhaust cams.  This allows the engine to use many complex strategies to deliver high power and high efficiency for such a small capacity. The control system components are as below.

Mazda have employed ion sensing technology to model per cylinder detonation, pre ignition and air fuel ratio and uses these in many of the airflow and ignition timing strategies to preserve reliability while maintaining a high as possible performance and low emissions.

Ion sensing involves measuring the electrical current flow after the spark initially bridges the gap between the center electrode of the sparkplug and the ground strap.  In the event of a misfire, no current flow can be easily detected, making it a fairly stable and accurate method of measuring misfires. 


Supplemental Content

Platform Specific


General


Table of Contents

The 4-2-1 type exhaust pipes have been adopted for the exhaust manifold to create an engine with a high compression ratio.

Two types of load and airflow estimation have been adopted for the intake air amount measurement to achieve stable combustion free from abnormal combustion.

  • L-jetronic (The intake air amount is directly detected by measuring the amount of intake air flow using the MAF sensor.) MAF sensor adopted
  • D-jetronic (The intake air amount is detected indirectly by measuring the intake manifold pressure (pressure between downstream of the throttle valve and intake manifold) using the MAP sensor.) MAP sensor adopted
  • IAT sensor No.1 and No.2 adopted

To improve the fuel economy and emission performance, an electric variable valve timing control has been adopted for the intake side, and a hydraulic variable valve timing control for the exhaust side. The electric type is adopted for the intake side to achieve expanded valve overlap and delayed closing of the intake valve (enlarged intake valve opening angle). The Hydraulic Lash Adjuster (HLA) has been adopted to achieve the maintenance-free valve clearance.

  • Intake side: Electric variable valve timing control with independent CMP sensor
  • Electric variable valve timing motor/driver
  • Electric variable valve timing relay
  • Exhaust side: Hydraulic variable valve timing control with independent CMP sensor

Engine hydraulic pressure switching control (using Engine oil solenoid valve) has been adopted to reduce the oil pump operation load on the engine.

To improve engine reliability, an ion sensor has been adopted which detects pre-ignition.


Some other features Mazda have listed as advances with their SkyActiv technology are.

 

Sliding resistance reduction

  • Rocker arm (with built-in needle roller bearing) adopted for cam-contact area
  • Reduced valve spring load
  • Narrowed down crankshaft journal
  • Optimized piston skirt shape
  • Lowered piston ring tension
  • Lowered drive belt tension
  • Suppressed chain tensioner load by stabilized timing chain behaviour
  • Oil shower pipe adopted

 

Mechanical resistance loss reduction

  • Optimized oil passage
  • Optimized oil pump shape
  • Engine oil control adopted

 

Cooling loss reduction in early stage of combustion

  • Piston cavity adopted

 

Pumping loss reduction

  • Variable valve timing mechanism adopted on both intake and exhaust sides for fine control of exhaust amount and internal EGR volume

 

Cooling efficiency improvement

  • Air seal cowl and flaps adopted
  • Optimized cooling fan shape
  • Optimized engine coolant passage
  • Optimized water pump impeller shape

 

Combustion efficiency improvement

  • Multiple hole-type fuel injectors
  • High-pressure fuel pump



Summary of Software

ProECU software has been introduced to allow reprogramming of the factory ECU in order to tune the necessary components of the calibration in order to allow for modifications and increases in power.  This is not a standalone repalcement ECU so you shouldn't run into the associated issues or disadvantages of setting up a purpose-built ECU and control system from scratch.

The software allows easy control over most factory parameters including:

  • Boost Targets and wastegate control
  • Target AFR
  • Ignition Timing
  • Fuel Delivery including fuel pump calibration (using the same style pump as OEM)
  • Airflow Measurement and fuel compensation

Ecutek offers full control of forced induction on SkyactivG cars.  As such we offer a well refined product that should be able to cope with the full range of forced induction and naturally aspirated modifications. We have also detailed some instructions on both of the example ROMs (NASP and FI) to help you tune these cars along with an example ROM to get you started. The YouTube video of the ECU Connect app highlights the advantages of packaging the tune with the EVI-BT and ECU Connect. 

Below are some links to the newsletters detailing the progress we have made on the product
• EcuTek release Mazda MX-5 ND RaceROM Update - http://mailchi.mp/ecutek/ecutek-release-mazda-mx-5-nd-racerom-update
• EcuTek release Mazda MX-5 ND RaceROM update for forced induct... - http://us7.campaign-archive1.com/?u=3293297053d29d26e037ea32b&id=9ae74a9f47
• EcuTek release Mazda MX-5 Skyactiv-G Retail kits - http://eepurl.com/bIa8ur
• EcuTek release Mazda MX-5 Skyactiv-G - http://eepurl.com/bHgUc5

You should be able to expect around a 15hp increase for NASP tunes and about 250hp in total for forced induction modifications.  See the dyno plots below to gauge the expected results for these types of modifications.


To get started there is an NASP example ROM and logs for the above power graph, these can be used to compare the results you achieve and the corresponding log from the stock ROM.

PSM4EB-example-v1-en...bin

tuned 182hp (1) (1).csv

stock 166hp (1) (1).csv

The key changes on the ROM are:

  • Increased intake cam advance over 6000rpm where the stock ROM appears to deliberately reduce the intake advance in order to reduce power.
  • Leaned out target AFR slightly
  • Raised cat temp threshold to reduce temperature-based enrichment.
  • Changed ignition maps to use just the base ignition map with increased advance.
  • Raised rev limit to get a little more top end power.


Forced Induction example ROM is significantly more complex the Logs below show the changes between the stock and the modified vehicle.

  • The key changes to the ROM are
    Increased intake cam advance over 6000rpm where the stock ROM appears to deliberately reduce the intake advance in order to reduce power.
  • Leaned out target AFR slightly
  • Raised cat temp threshold to reduce temperature-based enrichment.
  • Changed ignition maps to use just the base ignition map with increased advance.
  • Raised rev limit to get a little more top end power.
  • Made the FI pressure multiplier map match the boost ration profile of the turbo kit
  • Use the neutral torque override to drive the torque and desired load
  • Enabled RR speed density and used this to determine airflow when experiencing positive manifold pressure
  • Used the throttle limit tables to improve drivability
  • Disabled the EGT correction









Programming

For information on how to program as well as flash recovery, check out.

For more software guides check out:









Tuning Guide




Accelerator

Map List

      

Live Data Parameters





Boost Control

Map List

      

Live Data Parameters





Camshaft Timing

Mazda utilise an electronic Intake Cam VVT actuator to allow quick and precise wide range of movement.  With a maximum overlap from intake open to exhaust close is 92° allowing for huge amounts of blow through if not correctly calibrated.  In addition to using the cam timing for EGR duties, it allows the system to enact the “Mazda Miller Cycle at low loads.  This cycle allows the intake valve to stay open beyond the bottom of the travel and into the compression stroke causing a slight amount of the air fuel mixture to go back into the intake manifold during the initial ~20% of the piston’s compression stroke.  The benefit being a slight reduction of the effective compression ratio.  They also utilise a hydraulic exhaust cam VVT actuator to allow for maximised.  The basic outline of the cams and how it related to crank angle and injection period is shown below.  

They allow a wide range of movement (roughly 74deg), where the target position in the map is the advance or retard from the base stop position. The VVT has different target modes, for idle, cold start and normal operating temperature and the switch point between the modes is not known yet.




ItemSpecification
Valve Timing




IN
Open(°)BTDC 420ATDC 32
Close(°)ABDC 36-ABDC 110
EX

Open(°)BBDC 56-BBDC 11
Close(°)ATDC 5-ATDC 50

Map List



      

Live Data Parameters

  • VVT Intake Actual - Actual intake variable valve timing control - Advance amount from max retard position °(deg)
  • VVT Intake Desired - Target intake variable valve timing control - Advance amount from max retard position °(deg)
  • VVT Exhaust Desired - Target exhaust variable valve timing control - Retard amount from max advance position °(deg)
  • VVT Exhaust Actual - Actual exhaust variable valve timing control - Retard amount from max advance position °(deg)


Cam Timing Exhaust #1 & 2 (hot/cold)

These are standard maps that set a desired exhaust cam angle for different speeds and loads.  The output values are the amount of retard from the base position (most advanced angle 56deg BBDC). Maps one and two are believed to be high and low temperature, testing can be done on the dyno to see which one is used when.

It is believed that the large amount retard used at low loads on the exhaust cam is used to promote Exhaust gas recirculation through the manifold. When back pressure is significantly different due to higher airflow or exhaust blockages (like turbocharger turbines) significant changes may be required to these maps.  Especially as the load values with force induction will be exceeded even at low pedal % and engine speeds.

In the EcuTek Turbo charged Forced Induction example ROM the load axis was rescaled to allow it to compensate for the higher cylinder fill appropriately and more retard was used at higher RPM and loads to try get more out of the power stroke. The tuned profile looks like Below, testing should be done to confirm that the vehicle you are tuning responds in the same way.







Cam Timing Intake - Hot / Cold

These maps set the target intake cam angle. Mazda have calibrated them to match the exhaust cam mapping and create the Mazda Miller Cycle

When forced induction is involved the profile of these maps will need to be altered significantly as the available airflow characteristics are vastly different. Tuning these maps for forced induction requires load axis changes and significant modification to the higher RPM and load cells, deceasing intake advance at lower RPM high loads and increasing the advance at high RPM high and low loads.






Cam Timing Intake Idle

The intake cam angle target at idle. This may need to get adjusted if the idle blow through is higher than expected and causing issues.






Cam Timing Intake Idle Minimum

At different atmospheric pressure more intake cam advance may be required, and minimums can be set here.






Cam Timing Intake Limit

At low RPMs the cam timing is limited likely to prevent excessive blow through and overlap. These values should not need to be changed.






Cam Timing Intake / Exhaust Increase and Decrease Rates

There are increase and decrease rates for both cams, but these should not require adjustment.






VVT Max Load Input #1 - 3 (Cold to Hot)

The intake and exhaust cams have a load limit applied to them based on engine speed and intake air temperature. It is assumed that this was employed to try to reduce the likely hoot of knock by reducing the VE at high cylinder charge temperatures.


When FI is employed the load limits applied by these maps must be raised to allow the cams to access he correct regions of the map and use the correct cam timing. In the EcuTek FI example ROM these have been raised from 1.0 to 1.4 to match the load axis input in the Cam angle maps at normal AIT’s.









Fuelling

Fuel Target Tuning

The Target Fuelling strategy for ND is complex and is based on engine load with many protection modes and temperature control methods. It is basically split into 3 primary modes start up, part load, full load temperature control as well as two different fuel cut modes with corrections and limits are applied at various points in the calculation. There are fundamental differences between NASP and FI tuning that particular attention should be paid, such as accel pedal and temperature thresholds.  These are covered later in the document.

Mazda split the fuelling Control Method into zones


While cylinder fill models and lambda targets derive the injection quantity the conversion and correction of the injector open time is restricted according to the above modes.

Start Zone = RPM < 500

In this mode the injection time is set according to engine coolant temperature (low engine coolant temperature = long injection time). After start corrections are also set for a specified time according to engine coolant temperature directly after engine start

  • Low engine coolant temperature = large correction
  • Low intake air temperature = large correction

Feedback zone (λ = 1) = All other times

In this mode injection time is calculated as a base amount using Cylinder fill and fuel flow coefficients. It also applies corrections for

  • Warm up enrichment (low ECT or AIT) after start
  • Short term fuel trims (AFR Error actual to target)
  • Rear O2 sensor
  • Warm up enrichment at high loads
  • Long Term Fuel Trims (Learned value based on average value of A/F deviation amount)

Feedback zone (λ rich) = WOP accel and EGT above threshold

  • Short term fuel trims (AFR Error actual to target)
  • Warm up enrichment at high loads
  • Long Term Fuel Trims (Learned value based on average value of A/F deviation amount)
  • EGT Corrections (Based on the accelerator pedal opening angle or on engine speed and cylinder fill.)

Fuel cuts are determined as Injection time = 0 during

  • Excessive speed fuel cut zone = Above Rev Limit
  • Deceleration fuel cut zone = Accel pedal closed, above decel fuel cut off (DCFO) RPM and Vehicle speed


A heavily Simplified view of the strategy is below

AFR Target

Our advice for fuel tuning is use the trims as your guide. Adjust your MAF/SD maps as you need to keep the trims to zero and you will be sorted.



This is an AFR target table that is employed when the WOP (Wide Open Pedal) threshold is exceeded. In the OEM strategy there are 2x 2d maps (AFR Target - Full Load #1 / #2) the result of which is overwritten by the output of this map.

It is only enabled by checking the box in "AFR Target Override Enable"

Typical usage will include lowering the WOP threshold to a level that corresponds to a value that gives loads in the region of 0.8 or more. This is primarily for turbo application and used to switch to a richer target AFR that is variable with load, and prevent Lambda 1 at part pedal but significant load due to boost. On our turbo ND we lowered the WOP threshold from 93% to 35% but you should test for your selves.

The WOP thresholds can be found in the Fuelling->Accel Thresholds


Part Load Fuel target

From our testing the ND generally runs Lambda 1 at part throttle, except when in the transient mode (a fraction of a second) and when the catalyst temperature is above the cat temperature threshold map EGT control #2, it then richens up to the 3d part load tables.  It may also use the maps at part throttle (maybe at full throttle without kickdown button pressed on auto car).

The part load fuel targets are the maps “AFR Target Part Load #1 (#2 and #3)” affect the target AFR the ECU will ramp down to the target value (CAT temp goes about 826°C) so you can lean these out to reduce enrichment when at part/full throttle.

WOT AFR target

The WOT closed loop throttle is well understood but very complex. The AFR target at WOT is controlled by the 2 2d maps, along with some very small offsets for load. However, the ECU is constantly monitoring catalyst temp, exhaust temp and presumably cylinder head temp, all it appears through modelling. It will always ramp towards the richest target when certain cat temp thresholds are met or exceeded.

You can make the car run the WOT target you want by zeroing out the 3d EGT control enable table, or one of the 2d correction tables. I'm also sure that if you don't change the 3d target AFR tables that there is another temp threshold that will cause the afr target to ramp towards the values in those 3d maps.

So, to properly control the AFR at WOT you will need to alter the 2d maps, the 3d part load maps, the EGT/CatT thresholds and/or the CatT control enable maps. I will need to check what thresholds do what when I get back into the office.

You NEED to do some testing at part throttle, it generally runs Lambda 1 at part throttle once out of the transient mode (a fraction of a second) and it then richens up to the 3d part load tables, but only once the cat temp has reach 826.84degC CatT. If you put lean AFRs in those tables to make the CatT uncontrollable it will then wait until 900degC before making the target richer again using the same tables to avoid high cat temp at WOT.

On WOT, the ECU will use the 2d maps. Unless it runs into "something" it doesn't like, then it will use a number of richer maps, and if you don't edit them, you will get rich AFR on WOT. There are maps that provide a different target like the 3d maps *that are not normally used at WOT* and there are also 2 other 2d maps that are used depending on the cat temp and other factors, plus a load of other compensations that sometimes get applied.


Temperature Control fueling

There is a comprehensive temperature control strategy employed in ND and we have defined several maps that will richen the target for high catalyst, uego or estimated exhaust flange temp. These maps are in the Fuelling->EGT Control category.

The "EGT Control - Enrichment Enable" map will change how much enrichment gets applied by outputting a multiplier.

Typically back to back runs will bring the cat temps up and the ECU tries to fight this with richer AFR, so you may want to keep this in place for the end tune sent out for customers but disable for testing.

As previously discussed when not running stoich because the CAT temperature is high the part load tables are used. It is believed that these are still used at full throttle so would recommend to change the values at high RPM and load.

If part load maps target AFRs are excessively lean and make the Catalyst temperature uncontrollable the RGT control strategy will then wait until EGT Control #4 is reached (OEM is 900degC) before making the target richer again using the AFR target MAX vs EGT tables to avoid high cat temp (does the same at WOT).  


    

If you put 0.5 in this map the final AFR target would be the average of your normal map value (from the 2d WOT tables for example) and the values in the right hand column of the AFR Target _EGT Control Map. If you fill this table with 0 there will be no high temp enrichment from this strategy.  The 3d "part load" AFR target tables are not used unless the temperature goes above 827deg, but that doesn't stop them from also being used at WOT at high cat/egt temp.

You can see from that map that one of the values used in the calculation is the 920 degrees and that if the temp is below this the AFR target is still 14.7 which is a maximum, so it would still allow 12.5 target.

Then that final enrichment is weighted by this map:



When this strategy is active you need to look at the AFR Target - EGT Control map, the numbers in the left column are an EGT target correction factor, and if you raise them for a given AFR you will see less enrichment, if you lower them you will see more enrichments. The output of this is used instead of or on top of the Part load maps so changing these might lower the target AFR as well (though not the way its shown here the changes here are to prevent it going rich at high loads).




Appropriate EGT and Catalyst temperature control

It is recommended to alter the Selected minimum AFR targets as opposed to the EGT thresholds, if you change the EGT thresholds #2 #4 and #5 by a small amount (say 50°C) to raise or lower the temperatures when the enrichment maps for EGT control are used the risk of catalyst cooling strategies may not give adequate temperature reduction in time, this is more risky as using the above methods you can maintain a leaner AFR until the catalyst temp gets very high and then target a much richer AFR.

Transient Fueling

It does appear that the transient maps are essentially an accel pump, If you need to make it last longer or put more fuel in you should first try increasing the AFR Target – Transient Enrichment, which appears to be a global multiplier. The axis is likely delta throttle however currently unknown



If you need to try enrichening or enleaning a particular load or RPM point adjusting the AFR Target Compensation for load maps #1 & #2 is the next step, its believed these are a % correction value to the FR correction amount.



Injection Mode (RaceROM)

The injection mode maps are involved in the desired engine load calculation and should not need to be changed.



Map List

      

Live Data Parameters



Injection Timing

Injection timing on the MX5 ND is crucial to proper performance, when the boundaries are pushed the injectors appear to be the first part of the system that is flow restricted.  To combat this injection times, quantities and pressures can be altered to deliver more fuel in the same window without running into piston impingement or lean pockets preventing proper combustion initiation.

The injection angle maps have been added but each running mode has not yet been discovered, if you need to make changes to prevent misfires the suggestion is to increase all of the high load ports of each of the numbers of maps.


Injection angle High/Low Load #1-14

To set the injection angle adjust the map, usually only high load high RPM cells need to be adjusted, and as the output values appear to be in crank angle from TDC outputs above 360° may be injecting well into valve overlap.

Map List

      

Live Data Parameters


Fuel Pressure Control

The Mazda ND has low and high pressure Fuel Pump and rail system set up as per the diagram below, it’s a fairly standard set up using a return less low pressure system with a pressure regulator in the tank (4.5bar base control pressure not manifold referenced).

The low pressure side is a common design style and feeds the high pressure fuel pump directly. The high pressure Pump works from the exhaust cam on a 4 lobe pump drive with solenoid spill control.

Fuel pressure is derived by the reciprocation of the piston made by the cam installed on the rear end of the exhaust camshaft. Based on the control signal from the ECU, the spill valve control solenoid valve opens and closes in the high pressure fuel pump at a desired angle, the drive currents would use a similar peak and hold style output but this is not covered in any maps or documents currently..

If the spill valve control solenoid valve malfunctions and the fuel pressure exceeds the specified value, the relief valve opens to assure safety.

High Pressure Fuel Pump Pressure Target

The High Pressure Fuel Pump (HPFP) has man different operating modes which are not yet understood, There are definitely different target for cranking and after start that are implemented to attempt to improve atomisation when cold. There are fuel pressure logging parameters that can be used to monitor the achieved pressure and the target is set by the Pressure target 1-5.

Fuel Pressure – Target #1 - #5

These should be increased to improve the fueling capacity or if experiencing misfires due to injection quantity or piston crown fuel impingement. They are engine load and speed dependant and care must be taken that the relief valve set pressure is not exceeded as valve wear will occur very quickly and cause pump malfunction.








Idle

Map List

      

Live Data Parameters





Ignition

Our initial research showed us what maps were used when, and this is accurate, backed up by testing. However at the time we didn't really know why, or what it meant, which is something that has only just come to light, mainly after seeing similar strategies in use and finding some hard data.

EcuTek’s advice is that you should only tune the "Knock Limited" maps for higher load, and the "MBT offset maps" if you want to adjust very light load timing. Do not adjust the base maps, as these are Maximum Best Timing (MBT) maps and employed in the torque calculations that form the basis of many of the things the ECU is calculating. Things that influence the MBT timing are doing just that, and not really critical to tuning on load for forced induction. You need to concentrate on the "Knock Limited" maps.

Similar to other platforms the ND MX-5 runs off the lowest of the MBT (+ offset) or knock limited maps. There is no need to run more than MBT and you can't run more than the knock limited ignition, however, be aware that these maps will have no doubt been calibrated for a specific octane level, and the ECU provides the facility to pull the timing up or down depending on what it thinks the overall knock/octane situation is (simplification of course).

Due to the many things that are pulling the timing up and down it's normal to find your final timing values not agreeing with map values, as the map values really are just the starting point, however making relative adjustments to the "alternate" maps definitely shows up as changes in the final value.

We know the car runs in a variety of injection modes and are fairly sure that these involve changes in ignition, possible significant changes but without a little more live data to back up what we're are seeing it's hard to determine what's going on. This will no doubt be an area of further research.

Control ZoneControl ConditionIgnition Method
Start ZoneEngine speed is less than 500rpmEngine Starting
Normal ZoneEngine operation except start zoneCycle estimated ignition (Determines ignition timing adding each correction to basic spark advance


Ignition timing method table A: Ignition timing Base, B: Correction for ignition timing

ContentsCalculation Method or Determination for Ignition Timing, Spark Advance and CorrectionControl Zone
Start ZoneNormal Zone
Starting Ignition

Determination based on engine coolant temperatureA
Cycle Estimated IgnitionBasic Spark AdvanceSet value according to engine speed and charging efficiency
A
Correction






Engine Coolant Temperature Spark Advance CorrectionEnsures combustion stability when coolant temperature is low.  According to engine coolant temperature
High Charging Efficiency, Low Engine Coolant Temperature = Large Correction

B
Intake Air Temperature Correction

Suppresses knocking when engine intake air temperature is high.  According to engine intake air temperature and engine coolant temperature

High engine intake air temperature, high engine coolant temperature = Large Correction


B
Warm-Up Promotion Spark Retard Correction

Activates catalytic converter earlier.  Maximum 50s after engine start

Engine coolant temperature = Correction


B
Torque Reduction Correction

Reduction of shift shock, traction control, or suppression of vehicle vibration.   Based on torque reduction request from TCM or DSC

Large reduction request = Large Correction


B
Knocking Spark Retard Correction

Knocking Suppression

Acceleration when charging efficency volume increases (acceleration amount) is given value or higher.

Large acceleration amount = large correction


B
Valve Timing Correction

Ensures combustion stability.

When phase difference changes due to electric variable valve timing control wand hydraulic variable valve timing control.

Correction according to change in phase difference


B


The ECU energizes the ignition coils according to the ignition timing calculated from the engine operation conditions and the igniter energization time. The igniter energization time (ignition coil energization time) is determined according to battery voltage and engine speed.


map list

      

Live Data Parameters





Limiters

map list

      

Live Data Parameters





Load

map list

      

Live Data Parameters





Sensor Scaling

map list

      

Live Data Parameters





Torque

map list

      

Live Data Parameters





Misc.

map list

      

Live Data Parameters





EcuTek ProECU tuning tools tools should only be used by experienced tuners who understand the product and engine calibration. 
If you do not fully understand this product then you WILL damage your engine, ECU or your vehicle. 
Please ensure you fully read all EcuTek manuals BEFORE attempting to use ProECU with your laptop or your vehicle. 
Use with extreme caution and understanding at all times, if in doubt then do not proceed. 
EcuTek accepts no responsibility for any damage to the engine, ECU or any part of the vehicle that results directly or indirectly from using the product.


** If you are in any doubt that you do NOT have the experienced required to use this product then you should NOT USE IT **


Retail customers

** If you have any doubt that you do NOT have the experienced required to use this product then you should NOT USE IT, you should simply contact your EcuTek Master Tuner shown clearly on the top of your Programming Kit or visit your preferred tuning shop to have a professional tuner to use it for you ** 


Contact Us:

EcuTek Technical Support

support@ecutek.com

(+44) 1895 811200

When dialing from within the UK, the country code is not required so dial 01895 811200


Open Hours

Monday to Friday 9:00am - 5:00pm BST (UK Time)

(4am-1230pm Eastern Standard TIme US)

Visitors by appointment only


EcuTek Tehnologies Ltd.
8 Union Buildings
Wallingford Road
Uxbridge, UB8 2FR
England

VAT No: 
GB 235 2616 23




  • No labels